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The problem of identification of the effective thermal conductivity in a solidifying ingot is considered on the
basis of experimental data. The possibility of its solution with identifiability conditions obtained and imple-
mented in the present work is determined.

The quality of mathematical modeling of heat- and mass-transfer processes greatly depends on solution of the
problem of parametric identification and is mainly determined by the exactness of coefficients which enter into the
equations of convection and heat and mass transfer. The reliable values of these coefficients can be obtained only by
solution of corresponding inverse problems [1, 2]. We consider the problem of identifiability of the effective thermo-
physical parameters which allow one to abandon calculation of convection equations and thus to substantially simplify
computation schemes. The suggested algorithm of identification is constructed on the basis of the classical theories of
solution of direct problems and optimization methods.

As an example, we consider the one-dimensional process of heat exchange between a melt and a casting-mold
wall and the surrounding medium at the initial stage of solidification:
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Since the effective thermal conductivity λe in the melt at x 2 (x0, x1) is assumed to be uniform and in the casting-
mold wall at x 2 (x1, x2) to be known and equal to λ1, we can write λ(t, x) = λ1 + [λe(t) − λ1] Θ(x − x1). In this case,
Eq. (1) is transformed to the form [3]
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The boundary and initial conditions are as follows:
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We will evaluate the quality of identification of λe(t) by the difference between the experimentally determined
temperature of the melt Tg(t) at a certain point xg 2 (x0, x1) and the temperature T(t, xg) calculated by model (2) at
the same point:

J (λe) = ∫ 
ta

tb

[T (t, xg) − Tg (t)]2
 dt . (3)

Using a direct extremum approach [4], we construct the iteration algorithm of search for the optimum value
of the parameter λe(t):
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Here the gradient of functional (3) is

∇ J = 
∂f

∂x
 
∂T

∂x
 ,   (t, x) 2 (ta, tb) × x∗  . (5)

It is calculated at a certain point of the melt x∗  in terms of the solution f(t, x) of the conjugate problem
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The boundary and initial conditions for (6) have the form
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A distinctive feature of the direct extremum approach to solution of the identification problem (2), (3) with
algorithm (4), for example, as compared to [1], is that it does not require either preliminary digitization of the problem
or expansion of the sought function λe(t) in series.

We now pass to an analysis of the identifiability of the considered problem in the context of [5]. The direct
problems (2) and (6) are of parabolic form. It is well known that using corresponding difference schemes one can ob-
tain a correct solution of such problems [6]. It is seen from expression (6) that a nontrivial (nonidentically zeroth) so-
lution of the conjugate problem is possible only when xg < x∗  < x1. This follows from the presence of the δ function
in the free term of the equation. It is precisely this term that is the source of such a solution. In integration of (6),
the δ function is transformed to the Θ function, which differs from zero to the right of xg. Consequently, (6) will have
a non-zero solution f only to the right of xg.

Thus, the effective value of the thermal conductivity λe in model (2) is identifiable by the objective functional
(3) when

xg < x∗  < x1 . (7)

Figure 1 gives results of testing of the direct algorithm (4) with condition (7). Test calculations were organ-
ized according to the following scheme. A certain value of the effective thermal conductivity was assigned (solid line
in Fig. 1) and the initial problem (2) was solved. The determined temperature was taken as an experimental Tg based
on which we solved by algorithm (4) the inverse problem of determination of λe(t), minimizing functional (3).

During only 21 iterations, at β(t) = 0.2λe
0(t)/∇ J(λe

0; t)  and λe
0(t) = 5 W/(m⋅K) we obtained the solution

(dashed curve in Fig. 1), which virtually coincided with the exact value of the sought parameter. We note that calcu-

Fig. 1. Testing of the identification algorithm: solid line) exact value of λe(t);
dashed line) λe(t) identified by algorithm (4) with condition (7). λe, W/(m⋅K);
t, sec.
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lations without account for the identifiability conditions (7) led to incorrect results, and neglect of the parameter β,
which controls the direction of descent to min J with account for the sensitivity of J to λe, drastically decreased the
rate of convergence and did not allow the exact solution during a finite number of iterations. The obtained test calcu-
lations demonstrate the reliability and high efficiency of the method.

Figure 2 gives results of identification of the effective thermal conductivity λe by algorithm (4) during 25 it-
erations for the actual process of solidification of a steel melt in a cylindrical casting mold on the basis of experimen-
tal data [7]. The thickness of the wall of the casting equipment is x2 − x1 = 0.03 m, the ingot radius is x1 − x0 = 0.08
m, and the coordinate of the temperature-sensitive element is xg = 0.04 m. The adopted ratio of the linear dimensions
of the ingot and use of the effective value λe allow one to use the one-dimensional model of the process of solidifi-
cation [7]. The parameters are as follows: α = 580 W/(m2⋅K), C = 650 J/(kg⋅K), ρ = 6950 kg/m3, Tout = 300 K, and
Ta = 1673 K.

The value of the function λe(t) found by algorithm (4) for the mathematical model (2) with the identifiability

condition (7) is shown in Fig. 2a. The results are obtained at the initial approximation λe
0(t) = 5 W/(m⋅K) to which

there corresponded the maximum temperature difference max
t

   T(t, xg) − Tg(t)  = 224 K. For the λe(t) found it was

only 4 K. The results of the experiment and of the calculation of the temperature according to the model which are
given in Fig. 2b indicate a high accuracy of the modeling of solidification processes.

Use of direct extremum algorithms of identification with the suggested analysis of identifiability allows one to
efficiently solve the inverse problems of identification employing only traditional theories of solution of direct prob-
lems.

NOTATION

C and ρ, heat capacity and density of the melt; λ, thermal conductivity; α, heat-transfer coefficient; T, tem-
perature; x, coordinate; x0, center of the ingot; x1, "ingot–equipment" boundary; x2, "equipment–surrounding medium"
boundary; xg, coordinate of the temperature-sensitive element; t, time; Θ and δ, Heaviside function and delta function;
J, objective functional; ∇ J, gradient of the objective functional (linear functional); bk, step of the method; β, parameter
of control of the convergence of the optimization algorithm; f, conjugate state (linear functional). Subscripts: e, effec-
tive; out, outer medium; g, gauge; a and b, initial and finite time of the process; ∗ , identifiability region. Superscripts;
0, initial approximation; k, iteration number.
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